Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.

Identifieur interne : 000C69 ( Main/Exploration ); précédent : 000C68; suivant : 000C70

Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.

Auteurs : Charalambos Chrysostomou [Royaume-Uni] ; Huseyin Seker ; Nizamettin Aydin

Source :

RBID : pubmed:22255450

Descripteurs français

English descriptors

Abstract

Signal processing techniques such as Fourier Transform have widely been studied and successfully applied in many different areas. Techniques such as zero-padding and windowing have been developed and found very useful to improve the outcome of the signal processing methods. Resonant Recognition Model (RRM) and Complex Resonant Recognition Model (CRRM) that are based on the discrete Fourier Transform and widely used for the analysis of protein sequences do not consider such methods, which can however improve or alter the features extracted from the protein sequences. Therefore, in this paper, an extensive analysis was carried out to investigate into the influence of the zero-padding and windowing on the features extracted from the Complex Resonant Recognition Model. In order to present such effects, five different classes of influenza A virus Neuraminidase genes, which include H1N1, H1N2, H2N2, H3N2 and H5N1 genes, were used as a case study. For each of the Influenza A subtypes, two sets of Common Frequency Peaks (CFP) were extracted, one where windowing is applied and the other one where windowing is suppressed, for each signal length set for the analysis. In order to make all the signals (protein sequence) the same length, zero-padding was used. The signal lengths used in this study are set to 470, which is the maximum protein length, and also 512, 1024, 2048, 4096, 8192 and 16384 for further analysis. The results suggest that the windowing and zero-padding have key impact on CFP extracted from the Influenza A subtypes as the best match with CFP extracted from influenza A subtypes using CRRM is when the signal length of 4096 and windowing were both applied. Therefore, the outcome of this study should be taken into consideration for more accurate and reliable analysis of the protein sequences.

DOI: 10.1109/IEMBS.2011.6091228
PubMed: 22255450


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.</title>
<author>
<name sortKey="Chrysostomou, Charalambos" sort="Chrysostomou, Charalambos" uniqKey="Chrysostomou C" first="Charalambos" last="Chrysostomou">Charalambos Chrysostomou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bio-Health Informatics Research Group, Centre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester LE1 9BH, UK. cchrysostomou@dmu.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Bio-Health Informatics Research Group, Centre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester LE1 9BH</wicri:regionArea>
<wicri:noRegion>Leicester LE1 9BH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seker, Huseyin" sort="Seker, Huseyin" uniqKey="Seker H" first="Huseyin" last="Seker">Huseyin Seker</name>
</author>
<author>
<name sortKey="Aydin, Nizamettin" sort="Aydin, Nizamettin" uniqKey="Aydin N" first="Nizamettin" last="Aydin">Nizamettin Aydin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22255450</idno>
<idno type="pmid">22255450</idno>
<idno type="doi">10.1109/IEMBS.2011.6091228</idno>
<idno type="wicri:Area/PubMed/Corpus">000153</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000153</idno>
<idno type="wicri:Area/PubMed/Curation">000153</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000153</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000163</idno>
<idno type="wicri:Area/Ncbi/Merge">000732</idno>
<idno type="wicri:Area/Ncbi/Curation">000732</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000732</idno>
<idno type="wicri:doubleKey">1557-170X:2011:Chrysostomou C:effects:of:windowing</idno>
<idno type="wicri:Area/Main/Merge">000C74</idno>
<idno type="wicri:Area/Main/Curation">000C69</idno>
<idno type="wicri:Area/Main/Exploration">000C69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.</title>
<author>
<name sortKey="Chrysostomou, Charalambos" sort="Chrysostomou, Charalambos" uniqKey="Chrysostomou C" first="Charalambos" last="Chrysostomou">Charalambos Chrysostomou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bio-Health Informatics Research Group, Centre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester LE1 9BH, UK. cchrysostomou@dmu.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Bio-Health Informatics Research Group, Centre for Computational Intelligence, Faculty of Technology, De Montfort University, Leicester LE1 9BH</wicri:regionArea>
<wicri:noRegion>Leicester LE1 9BH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seker, Huseyin" sort="Seker, Huseyin" uniqKey="Seker H" first="Huseyin" last="Seker">Huseyin Seker</name>
</author>
<author>
<name sortKey="Aydin, Nizamettin" sort="Aydin, Nizamettin" uniqKey="Aydin N" first="Nizamettin" last="Aydin">Nizamettin Aydin</name>
</author>
</analytic>
<series>
<title level="j">Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference</title>
<idno type="ISSN">1557-170X</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Sequence</term>
<term>Influenza A virus (metabolism)</term>
<term>Molecular Sequence Data</term>
<term>Pattern Recognition, Automated (methods)</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
<term>Sequence Analysis, Protein (methods)</term>
<term>Viral Proteins (chemistry)</term>
<term>Viral Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence de protéine ()</term>
<term>Données de séquences moléculaires</term>
<term>Protéines virales ()</term>
<term>Protéines virales (métabolisme)</term>
<term>Reconnaissance automatique des formes ()</term>
<term>Reproductibilité des résultats</term>
<term>Sensibilité et spécificité</term>
<term>Séquence d'acides aminés</term>
<term>Virus de la grippe A (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Influenza A virus</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Pattern Recognition, Automated</term>
<term>Sequence Analysis, Protein</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines virales</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Amino Acid Sequence</term>
<term>Molecular Sequence Data</term>
<term>Reproducibility of Results</term>
<term>Sensitivity and Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de séquence de protéine</term>
<term>Données de séquences moléculaires</term>
<term>Protéines virales</term>
<term>Reconnaissance automatique des formes</term>
<term>Reproductibilité des résultats</term>
<term>Sensibilité et spécificité</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Signal processing techniques such as Fourier Transform have widely been studied and successfully applied in many different areas. Techniques such as zero-padding and windowing have been developed and found very useful to improve the outcome of the signal processing methods. Resonant Recognition Model (RRM) and Complex Resonant Recognition Model (CRRM) that are based on the discrete Fourier Transform and widely used for the analysis of protein sequences do not consider such methods, which can however improve or alter the features extracted from the protein sequences. Therefore, in this paper, an extensive analysis was carried out to investigate into the influence of the zero-padding and windowing on the features extracted from the Complex Resonant Recognition Model. In order to present such effects, five different classes of influenza A virus Neuraminidase genes, which include H1N1, H1N2, H2N2, H3N2 and H5N1 genes, were used as a case study. For each of the Influenza A subtypes, two sets of Common Frequency Peaks (CFP) were extracted, one where windowing is applied and the other one where windowing is suppressed, for each signal length set for the analysis. In order to make all the signals (protein sequence) the same length, zero-padding was used. The signal lengths used in this study are set to 470, which is the maximum protein length, and also 512, 1024, 2048, 4096, 8192 and 16384 for further analysis. The results suggest that the windowing and zero-padding have key impact on CFP extracted from the Influenza A subtypes as the best match with CFP extracted from influenza A subtypes using CRRM is when the signal length of 4096 and windowing were both applied. Therefore, the outcome of this study should be taken into consideration for more accurate and reliable analysis of the protein sequences.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Aydin, Nizamettin" sort="Aydin, Nizamettin" uniqKey="Aydin N" first="Nizamettin" last="Aydin">Nizamettin Aydin</name>
<name sortKey="Seker, Huseyin" sort="Seker, Huseyin" uniqKey="Seker H" first="Huseyin" last="Seker">Huseyin Seker</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Chrysostomou, Charalambos" sort="Chrysostomou, Charalambos" uniqKey="Chrysostomou C" first="Charalambos" last="Chrysostomou">Charalambos Chrysostomou</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22255450
   |texte=   Effects of windowing and zero-padding on Complex Resonant Recognition Model for protein sequence analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22255450" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a H2N2V1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021